
PID + Kalman Filter + MPC
LabVIEW Applications

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

PID + Kalman Filter + MPC
LabVIEW Applications

Overview:
• Part 1 – Introduction to LabVIEW Application
• Part 2 – Building Simulator
• Part 3 – PID Control
• Part 4 – Feedforward using Kalman Filter
• Part 5 – MPC (with Kalman Filter)

Introduction
In this Video we will Control a Level Tank System
using different control strategies:
• PID
• Use Kalman Filter for Estimation of Unknown

Process Variables/Measurements
• PID + Feedforward (with help of Kalman Filter)
• MPC (+ Kalman Filter)
We will not go in depth of the theory, but focus on
the practical implementation in LabVIEW

System Overview

Real
System

Modell

!"

#

$#

%

Kalman Filter

'̅

#
PID/FF/MPC

System
Identification

(
Controller

Level Tank Process

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

!"#$

%$

ℎ

Level Tank
!"
#ℎ
#% = '() − '+,"

-.

'()/

Where:
• '() - flow into the tank ,	'()= -./
• '+," - flow out of the tank
• !" is the cross-sectional area of the tank

!"

ℎ̇ = 1
!"
(-./ − '+,")

or:

Level Tank
ℎ̇ = 1

%&
(()* − ,-.&)

,̇-.& = 0 Assumption: ,-.& ≈ constant

2̇3 = − 1
%&
24 +

1
%&
()*

2̇4 = 0
6 = 23

23 = ℎ
24 = ,-.& 2̇3

2̇4 = 0 − 1
%&

0 0
7

23
24 +

8

()
%&
0
9

*

6 = 1 0
:

23
24

2̇ = %2 + ;*
6 = <2 + =*

LabVIEW Application

Demo
https://www.halvorsen.blog

https://www.halvorsen.blog/

Level Tank Simulator

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Level Tank Model Implementation in LabVIEW
We have implemented it as a Simulation
Subsystem in LabVIEW:

We need to find
unknown
Parameters
-> System
Identification

System Identification

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

• System Identification: System Identification uses
statistical methods to build mathematical models of
dynamical systems from measured data

• State Estimation: Use of mathematical models in
order to estimate the internal states of a process.
Example: Kalman Filter

LabVIEW has built-in functionality for both System
Identification and State Estimation

System Identification and Estimation Theory

System Identification Categories
We have 2 main categories of System Identification:
• Parameter Estimation based on that we have developed a

mathematical model using the laws of physics
(Mechanistic Models) and you want to find the unknown
model parameters. Here we can use least squares
method, etc. The unknown parameters are then found
from experimental data.

• Black-box / Subspace methods: System Identification
based on that you do not have a mathematical model
available. The models (Empirical Models) are found from
experimental data only using advanced algorithms.

Theory

System
Identification

Mechanistic
Models

Empirical
Models

Parameter
Estimation

PLS/PCR,
Black-box,
Subspace,
Wavelet,
etc.

Physical Knowledge

Finding mathematical model(s)
using the laws of physics/first
principles

The unknown Parameters within the model(s) needs to be found

Trial and Error, Step Response, Least Square Methods, etc.

The model is found from
experimental data

Datalogging from Real System
(Experimental Data)

Datalogging from Real
System
(Experimental Data)

Empirical modelling refers to any kind of (computer) modelling
based on empirical observations rather than on mathematically
describable relationships of the system modelled.

Example of unknown Parameters: Pump gain, Valve constants, etc.
Some of these can be found in data
sheets, etc., while others is not so easy
to find. Then Parameter Estimation is a
good method to find these.

Theory

System Identification Methods
Suggestions: Find the Model Parameters using:
• The Least Square Method
• Then adjust and fine-tune the Model Parameters using

the “Trial and Error” method if necessary
• It is advised that you use at least 2 different methods

for comparison.
• Other relevant methods may be: “Step Response”

method, “Sub-space” methods, built-in methods in
LabVIEW/MATLAB, etc.

Theory

System Identification – Step by step
1. Exite the Real System, e.g.:

2. Log Data

3. Use the Logged Data to find the model or the model

parameters

Real System
!" #"

Log Data to File,

Database, etc.

4. Validate the Model against logged data and/or the real system

Split the Logged Data into

2 parts:

- One part should be

used for finding the

Model (Parameters)

- The other parts should

be used for Model

Validation

Loop

Least Square Example
Given:

We want to find the unknown a and b.
This gives:

i.e.,:

Then we need to discretize:

This gives:

Based on logged data we get:

The we find the uknows a and b using LS:

Trial & Error Method

Adjust model parameters and then compare the response from the
real system with the simulated model. If they are “equal”, you have
probably found a good model (at least in that working area)

Theory

Model Validation
Make sure to validate that your model works as expected

Example of simple model validation:

Theory

System Identification
in LabVIEW

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

System Identification in LabVIEW
“LabVIEW Control Design and Simulation
Module” has built-in features for System
Identification

System Identification in LabVIEW
Datalogging

Measurement File

Database

https://www.halvorsen.blog

https://www.halvorsen.blog/

Datalogging Example in LabVIEW

Least Square Example in LabVIEW
!"# = (Φ'Φ))*Φ'Y

Least Square Formula implemented from scratch:

We can also use the built-in “Solve Linear Equations.vi” directly:

Least Square Example in LabVIEW
!"# = (Φ'Φ))*Φ'Y

Trial & Error in LabVIEW

Water Tank Model Values
The following values was found using System Identification:

!" = 78.5 ()
*+ = 16.5 ()./0

123" should be adjustable from your Front Panel
The range for 123" could, e.g., be 0 ≤ 123" ≤ 40()./0

Level Tank Model Implementation in LabVIEW
We have implemented it as a Simulation
Subsystem in LabVIEW:

PID Control

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Feedback (PID) Control

The PID Algorithm

Tuning Parameters:

!"
#$
#%

Where & is the controller output and ' is the
control error:

' (= * (− ,(()
* is the Reference Signal or Set-point
, is the Process value, i.e., the Measured value

& (= !"' +
!"
#$
0
1

2
'34 + !"#%'̇

Proportional Gain

Integral Time [sec.]
Derivative Time [sec.]

PID in LabVIEW

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

PID in LabVIEW
Normally we use seconds as unit for Ti and Td (which is
recommended!)

But the built-in PID algorithm in LabVIEW uses minutes
as unit!

Trick:
Divide by 60

Front Panel

Block Diagram:

You could also put this code
into a new SubVI

Cluster

PID
LabVIEW Application

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Demo
https://www.halvorsen.blog

https://www.halvorsen.blog/

Feedforward Control

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Feedforward Control

We will use Kalman Filter to find
Estimates for the outflow (!"#$)

In our Real Level Tank System, only
the Level is measured.

In this system is !"#$ a disturbance that
we want to remove by using Feedforward

% = %'() + %+

Feedforward Control
• In this system is !"#$ a noise signal/disturbance

that we want to remove by using Feedforward.
• We want to design the Feedforward controller so

that !"#$ is eliminated.
– Solve for the control variable %, and substituting the

process output variable ℎ by its setpoint ℎ'(.
– !"#$ is not measured, so you need to use the estimated

value instead. Assume that the setpoint is constant.
We will use Feedforward Control in order to improve the control, compared to ordinary Feedback Control.

Design Feedforward Control for Level Tank
We want to design the Feedforward controller so that !"#$ is eliminated.
We solve for the control variable %, and substituting the process output variable ℎ by its setpoint ℎ'(. This
gives the following feedforward controller %):

%) =
+ℎ̇'(
-(

+ !"#$-(
We assume that the setpoint is constant, i.e. ℎ̇'(= 0. This gives:

%) =
!"#$
-(

!"#$ is not measured, so we have to use the estimated value instead. This gives the following
Feedforward controller:

01 =
2304,674
89

Note! Without feedforward control the control signal range of the PID controller is normally [0, 5]. With
feedforward the output signal can be set to have the range [−5, +5], so the contribution %(>? from the
PID controller can be negative. If %(>? cannot be negative, the total signal % = %(>? + %) may not be small
enough value to give proper control when the outflow is small.

Note! -(is here the
Pump Gain – NOT -(in
the PID Controller

Kalman Filter

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Kalman Filter
• The Kalman Filter is a commonly used method to

estimate the values of state variables of a dynamic
system that is excited by stochastic (random)
disturbances and stochastic (random) measurement
noise.

• We will estimate the process variable(s) using a Kalman
Filter.

• We will use one of the built-in Kalman Filter algorithms
in LabVIEW, but in addition we will create our own
Kalman Filter algorithms from scratch.

Kalman Filter

Kalman Filter

State-space Model

Pre Step: Find the steady state Kalman Gain !
" is time-varying, but you normally implement the steady state version of Kalman Gain ".

Init Step: Set the initial Apriori (Predicted) state estimate
$̅% = $%

Step 1: Find Measurement model update
'() = *($̅), -))

For Linear State-space model:
'() = /$̅) + 1-)

Step 2: Find the Estimator Error
2) = () − '()

Step 3: Find the Aposteriori (Corrected) state estimate
4$) = $̅) + "2)

Where " is the Kalman Filter Gain. Use the steady state Kalman Gain or calculate the time-varying Kalman Gain.

Step 4: Find the Apriori (Predicted) state estimate update
$̅)56 = 7(4$), -))

For Linear State-space model:
$̅)56 = 84$) + 9-)

Step 1-4 goes inside a loop in your program.

Kalman Filter Algorithm

Testing the Kalman Filter
• As with every model-based algorithm you should test your Kalman

Filter with a simulated process before applying it to the real system.
• You can implement a simulator in LabVIEW since you already have a

model (the Kalman Filter is model-based).
• In the testing, you can start with testing the Kalman Filter with the

model in the simulator (without noise).
• Then you can introduce some noise in your simulator.
• You could also introduce some reasonable model errors by making

the simulator model somewhat different from the Kalman Filter
model, and check if the Kalman Filter still produces usable estimates.

Estimation and Kalman
Filters in LabVIEW

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

State Estimation in LabVIEW
“LabVIEW Control
Design and Simulation
Module” has built-in
features for State
Estimation, including
different types of
Kalman Filter algorithms

Kalman Filter
LabVIEW Application

Hans-Petter Halvorsen

https://www.halvorsen.blog

Feedforward Control

https://www.halvorsen.blog/

Built-in Kalman Filter in LabVIEW

Linear Kalman Filter Implementation from scratch

Nonlinear Kalman Filter Implementation from scratch

Demo
https://www.halvorsen.blog

https://www.halvorsen.blog/

MPC

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Model Predictive Control (MPC)

• Model predictive control (MPC) is an advanced method of process

control that has been in use in the process industries since the 1980s.

• Model Predictive Control (MPC) is a multivariable control algorithm.

• Model predictive controllers rely on dynamic models of the process,

most often linear empirical models obtained by system identification.

• MPC is based on iterative, finite-horizon optimization of a plant

model.

• This is achieved by optimizing a finite time-horizon, but only

implementing the current timeslot. MPC has the ability to anticipate

future events and can take control actions accordingly.

https://en.wikipedia.org/wiki/Model_predictive_control

https://en.wikipedia.org/wiki/Model_predictive_control

Model Predictive Control (MPC)

[Wikipedia]

MPC

!

"#
$ %

&

$'() < $ < $'+,
#'() < # < #'+,

MPC Controller
MPC consists of:
• A Model of the process

– Typically a State-space model, e.g.:
"̇ = $" + &'
(=)" + *'

• A Cost function, e.g.:

+ = ,
-./

01
2(− 4 56 2(− 4 +,

-./

07
∆'59 ∆'

• Constraints, e.g.:
':;< ≤ ' ≤ ':>?
(:;< ≤ (≤ (:>?

MPC Cost Function

! = #
$%&

'(
)* − , -.)* − , +#

$%&

'0
∆2-3 ∆2

Where:
45 – Prediction horizon, 46 – Control horizon
, – Set-point
)* – Predicted process output
∆2 – Predicted change in control value, ∆2$ = 2$ − 2$78
. – Output error weight matrix
3 – Control weight matrix

The cost function often used in MPC is like this (a Linear Quadratic (LQ) function):

So the basic problem is to solve:

9!
92 = 0 → 2<5=

[National Instruments, LabVIEW Control Design user Manual, 2008.
Available: http://www.ni.com/pdf/manuals/371057f.pdf]

http://www.ni.com/pdf/manuals/371057f.pdf

The Cost Function – Optimization
So the basic problem is to solve:

!"
!# = 0 → #'()

By solving this we get the future
optimal control.

Solving *+*, = 0 is quite complex and
will not be part of this tutorial, but
in the figure below we see an
illustration of the problem.

LabVIEW, MATLAB, etc. have built-in
functions and algorithms which we
will use.

Constraints
• All physical systems have constraints.
• We have physical constraints like actuator limits, etc. and we

have safety constraints like temperature and pressure limits.
• Finally we have performance constraints like overshoot, etc.

In MPC you normally define these constraints:
Constraints in the outputs:

!"#$ ≤ ! ≤ !"&'
Constraints in the inputs:

∆)"#$≤ ∆) ≤ ∆)"&'
)"#$ ≤) ≤)"&'

Note! ∆)* =)* −)*-.

The MPC controller takes all
these constraints into
consideration when calculating
the future controls.

Model Predictive Control (MPC)

Here you see MPC used in
combination with an Estimator.

Since we already use a Kalman
Filter Estimator, we can use that
in combination with MPC

PID vs. MPC
• MPC is often used in addition to traditional control like PID

– not as a replacement.
• In large plants MPC is not a replacement for traditional PID,

but used in addition to PID controllers.
• PID controllers are used as single-loop controllers, while

MPC is used as an overall system.
• PID handles only a single input and a single output (SISO

systems), while MPC is a more advanced method of process
control used for MIMO systems (Multiple Inputs, multiple
Outputs).

PID vs. MPC
Traditional Control (PID) MPC

• No knowledge about constraints
• Set-point far from constraints
• Not optimal process operation
• SISO systems
• A mathematical model is not needed

• Constraints included in the design
• Set-point can be closer to constraints
• Improved process operation
• MIMO systems
• A mathematical model is needed

Another advantage of MPC is that cross coupling in multiple input and multiple output (MIMO) systems are taken into consideration in an optimal way. MPC is a simple method for controlling MIMO systems.

MPC in LabVIEW

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

MPC in LabVIEW
In LabVIEW you have the following Predictive Control palette:

• You use the “CD Create MPC Controller” VI to create an MPC controller. This VI
bases the MPC controller on a state-space model of the plant that you provide.

• The “CD Implement MPC Controller” is used to calculate the control values for
each sampling time and is normally implemented in a loop, e.g., a While Loop.

MPC Example in LabVIEW
This is just a “bad” example – we will create a better application

MPC
LabVIEW Application

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Model Predictive Control (MPC)

Here you see MPC used in
combination with an Estimator.

Since we already use a Kalman
Filter Estimator, we can use that in
combination with MPC

Demo
https://www.halvorsen.blog

https://www.halvorsen.blog/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

