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PID + Kalman Filter + MPC 
LabVIEW Applications

Overview:
• Part 1 – Introduction to LabVIEW Application
• Part 2 – Building Simulator
• Part 3 – PID Control
• Part 4 – Feedforward using Kalman Filter
• Part 5 – MPC (with Kalman Filter)



Introduction
In this Video we will Control a Level Tank System 
using different control strategies:
• PID
• Use Kalman Filter for Estimation of Unknown 

Process Variables/Measurements
• PID + Feedforward (with help of Kalman Filter)
• MPC (+ Kalman Filter)
We will not go in depth of the theory, but focus on 
the practical implementation in LabVIEW
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Level Tank Process
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Where:
• '() - flow into the tank ,	'()= -./
• '+," - flow out of the tank
• !" is the cross-sectional area of the tank
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or:
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LabVIEW Application
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Level Tank Simulator
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Level Tank Model Implementation in LabVIEW
We have implemented it as a Simulation 
Subsystem in LabVIEW:

We need to find 
unknown 
Parameters
-> System 
Identification
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• System Identification: System Identification uses 
statistical methods to build mathematical models of 
dynamical systems from measured data

• State Estimation: Use of mathematical models in 
order to estimate the internal states of a process. 
Example: Kalman Filter

LabVIEW has built-in functionality for both System 
Identification and State Estimation

System Identification and Estimation Theory



System Identification Categories
We have 2 main categories of System Identification:
• Parameter Estimation based on that we have developed a 

mathematical model using the laws of physics 
(Mechanistic Models) and you want to find the unknown 
model parameters. Here we can use least squares 
method, etc. The unknown parameters are then found 
from experimental data.

• Black-box / Subspace methods: System Identification 
based on that you do not have a mathematical model 
available. The models (Empirical Models) are found from 
experimental data only using advanced algorithms.

Theory



System 
Identification

Mechanistic 
Models

Empirical 
Models

Parameter 
Estimation

PLS/PCR,
Black-box,
Subspace,
Wavelet,
etc.

Physical Knowledge

Finding mathematical model(s) 
using the laws of physics/first 
principles

The unknown Parameters within the model(s) needs to be found

Trial and Error, Step Response, Least Square Methods, etc.

The model is found from 
experimental data

Datalogging from Real System 
(Experimental Data)

Datalogging from Real 
System
(Experimental Data)

Empirical modelling refers to any kind of (computer) modelling 
based on empirical observations rather than on mathematically 
describable relationships of the system modelled.

Example of unknown Parameters: Pump gain, Valve constants, etc.
Some of these can be found in data 
sheets, etc., while others is not so easy 
to find. Then Parameter Estimation is a 
good method to find these.

Theory



System Identification Methods
Suggestions: Find the Model Parameters using:
• The Least Square Method
• Then adjust and fine-tune the Model Parameters using 

the “Trial and Error” method if necessary
• It is advised that you use at least 2 different methods 

for comparison.
• Other relevant methods may be: “Step Response” 

method, “Sub-space” methods, built-in methods in 
LabVIEW/MATLAB, etc.

Theory



System Identification – Step by step
1. Exite the Real System, e.g.:

2. Log Data

3. Use the Logged Data to find the model or the model 

parameters

Real System
!" #"

Log Data to File, 

Database, etc.

4. Validate the Model against logged data and/or the real system

Split the Logged Data into 

2 parts:

- One part should be 

used for finding the 

Model (Parameters)

- The other parts should 

be used for Model 

Validation 

Loop



Least Square Example
Given:

We  want to find the unknown a and b.
This gives:

i.e.,:

Then we need to discretize:

This gives:

Based on logged data we get:

The we find the uknows a and b using LS:



Trial & Error Method

Adjust model parameters and then compare the response from the 
real system with the simulated model. If they are “equal”, you have 
probably found a good model (at least in that working area) 

Theory



Model Validation
Make sure to validate that your model works as expected

Example of simple model validation:

Theory



System Identification
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System Identification in LabVIEW
“LabVIEW Control Design and Simulation 
Module” has built-in features for System 
Identification



System Identification in LabVIEW
Datalogging

Measurement File

Database
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Datalogging Example in LabVIEW



Least Square Example in LabVIEW
!"# = (Φ'Φ))*Φ'Y

Least Square Formula implemented from scratch:

We can also use the built-in “Solve Linear Equations.vi” directly:



Least Square Example in LabVIEW
!"# = (Φ'Φ))*Φ'Y



Trial & Error in LabVIEW



Water Tank Model Values
The following values was found using System Identification:

!" = 78.5 ()
*+ = 16.5 ()./0

123" should be adjustable from your Front Panel
The range for 123" could, e.g.,  be 0 ≤ 123" ≤ 40()./0



Level Tank Model Implementation in LabVIEW
We have implemented it as a Simulation 
Subsystem in LabVIEW:



PID Control
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Feedback (PID) Control



The PID Algorithm

Tuning Parameters:

!"
#$
#%

Where & is the controller output and ' is the 
control error:

' ( = * ( − ,(()
* is the Reference Signal or Set-point
, is the Process value, i.e., the Measured value

& ( = !"' +
!"
#$
0
1

2
'34 + !"#%'̇

Proportional Gain

Integral Time [sec. ]
Derivative Time [sec. ]



PID in LabVIEW
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PID in LabVIEW
Normally we use seconds as unit for Ti and Td (which is 
recommended!)

But the built-in PID algorithm in LabVIEW uses minutes
as unit! 

Trick: 
Divide by 60

Front Panel

Block Diagram:

You could also put this code 
into a new SubVI

Cluster



PID
LabVIEW Application
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Feedforward Control
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Feedforward Control

We will use Kalman Filter to find 
Estimates for the outflow (!"#$) 

In our Real Level Tank System, only 
the Level is measured.

In this system is !"#$ a disturbance that 
we want to remove by using Feedforward

% = %'() + %+



Feedforward Control
• In this system is !"#$ a noise signal/disturbance 

that we want to remove by using Feedforward.
• We want to design the Feedforward controller so 

that !"#$ is eliminated.
– Solve for the control variable %, and substituting the 

process output variable ℎ by its setpoint ℎ'(. 
– !"#$ is not measured, so you need to use the estimated 

value instead. Assume that the setpoint is constant.
We will use Feedforward Control in order to improve the control, compared to ordinary Feedback Control.



Design Feedforward Control for Level Tank
We want to design the Feedforward controller so that !"#$ is eliminated.
We solve for the control variable %, and substituting the process output variable ℎ by its setpoint ℎ'(. This 
gives the following feedforward controller %):

%) =
+ℎ̇'(
-(

+ !"#$-(
We assume that the setpoint is constant, i.e. ℎ̇'( = 0. This gives:

%) =
!"#$
-(

!"#$ is not measured, so we have to use the estimated value instead. This gives the following 
Feedforward controller:

01 =
2304,674
89

Note! Without feedforward control the control signal range of the PID controller is normally [0, 5]. With 
feedforward the output signal can be set to have the range [−5, +5], so the contribution %(>? from the 
PID controller can be negative. If %(>? cannot be negative, the total signal % = %(>? + %) may not be small 
enough value to give proper control when the outflow is small.

Note! -( is here the 
Pump Gain – NOT -( in 
the PID Controller 
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Kalman Filter
• The Kalman Filter is a commonly used method to 

estimate the values of state variables of a dynamic 
system that is excited by stochastic (random) 
disturbances and stochastic (random) measurement 
noise.

• We will estimate the process variable(s) using a Kalman 
Filter.

• We will use one of the built-in Kalman Filter algorithms 
in LabVIEW, but in addition we will create our own 
Kalman Filter algorithms from scratch. 



Kalman Filter

Kalman Filter

State-space Model



Pre Step: Find the steady state Kalman Gain !
" is time-varying, but you normally implement the steady state version of Kalman Gain ". 

Init Step: Set the initial Apriori (Predicted) state estimate
$̅% = $%

Step 1: Find Measurement model update
'() = *($̅), -))

For Linear State-space model:
'() = /$̅) + 1-)

Step 2: Find the Estimator Error
2) = () − '()

Step 3: Find the Aposteriori (Corrected) state estimate
4$) = $̅) + "2)

Where " is the Kalman Filter Gain. Use the steady state Kalman Gain or calculate the time-varying Kalman Gain.

Step 4: Find the Apriori (Predicted) state estimate update 
$̅)56 = 7(4$), -))

For Linear State-space model:
$̅)56 = 84$) + 9-)

Step 1-4 goes inside a loop in your program.

Kalman Filter Algorithm



Testing the Kalman Filter
• As with every model-based algorithm you should test your Kalman 

Filter with a simulated process before applying it to the real system. 
• You can implement a simulator in LabVIEW since you already have a 

model (the Kalman Filter is model-based). 
• In the testing, you can start with testing the Kalman Filter with the 

model in the simulator (without noise). 
• Then you can introduce some noise in your simulator. 
• You could also introduce some reasonable model errors by making 

the simulator model somewhat different from the Kalman Filter 
model, and check if the Kalman Filter still produces usable estimates.



Estimation and Kalman 
Filters in LabVIEW
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State Estimation in LabVIEW
“LabVIEW Control 
Design and Simulation 
Module” has built-in 
features for State 
Estimation, including 
different types of 
Kalman Filter algorithms



Kalman Filter
LabVIEW Application

Hans-Petter Halvorsen

https://www.halvorsen.blog

Feedforward Control

https://www.halvorsen.blog/


Built-in Kalman Filter in LabVIEW



Linear Kalman Filter Implementation from scratch



Nonlinear Kalman Filter Implementation from scratch
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Model Predictive Control (MPC)

• Model predictive control (MPC) is an advanced method of process 

control that has been in use in the process industries since the 1980s.

• Model Predictive Control (MPC) is a multivariable control algorithm.

• Model predictive controllers rely on dynamic models of the process, 

most often linear empirical models obtained by system identification. 

• MPC is based on iterative, finite-horizon optimization of a plant 

model.

• This is achieved by optimizing a finite time-horizon, but only 

implementing the current timeslot. MPC has the ability to anticipate 

future events and can take control actions accordingly.

https://en.wikipedia.org/wiki/Model_predictive_control

https://en.wikipedia.org/wiki/Model_predictive_control


Model Predictive Control (MPC)

[Wikipedia]

MPC

!

"#
$ %

&

$'() < $ < $'+,
#'() < # < #'+,



MPC Controller
MPC consists of:
• A Model of the process

– Typically a State-space model, e.g.: 
"̇ = $" + &'
( = )" + *'

• A Cost function, e.g.:

+ = ,
-./

01
2( − 4 56 2( − 4 +,

-./

07
∆'59 ∆'

• Constraints, e.g.:
':;< ≤ ' ≤ ':>?
(:;< ≤ ( ≤ (:>?



MPC Cost Function

! = #
$%&

'(
)* − , -. )* − , +#

$%&

'0
∆2-3 ∆2

Where:
45 – Prediction horizon, 46 – Control horizon
, – Set-point
)* – Predicted process output
∆2 – Predicted change in control value, ∆2$ = 2$ − 2$78
. – Output error weight matrix
3 – Control weight matrix

The cost function often used in MPC is like this (a Linear Quadratic (LQ) function):

So the basic problem is to solve:

9!
92 = 0 → 2<5=

[National Instruments, LabVIEW Control Design user Manual, 2008. 
Available: http://www.ni.com/pdf/manuals/371057f.pdf]

http://www.ni.com/pdf/manuals/371057f.pdf


The Cost Function – Optimization
So the basic problem is to solve:

!"
!# = 0 → #'()

By solving this we get the future 
optimal control.

Solving *+*, = 0 is quite complex and 
will not be part of this tutorial, but 
in the figure below we see an 
illustration of the problem.

LabVIEW, MATLAB, etc. have built-in 
functions and algorithms which we 
will use.



Constraints
• All physical systems have constraints. 
• We have physical constraints like actuator limits, etc. and we 

have safety constraints like temperature and pressure limits. 
• Finally we have performance constraints like overshoot, etc.

In MPC you normally define these constraints:
Constraints in the outputs:

!"#$ ≤ ! ≤ !"&'
Constraints in the inputs:

∆)"#$≤ ∆) ≤ ∆)"&'
)"#$ ≤ ) ≤ )"&'

Note! ∆)* = )* − )*-.

The MPC controller takes all 
these constraints into 
consideration when calculating 
the future controls.



Model Predictive Control (MPC)

Here you see MPC used in 
combination with an Estimator.

Since we already use a Kalman 
Filter Estimator, we can use that 
in combination with MPC



PID vs. MPC
• MPC is often used in addition to traditional control like PID 

– not as a replacement. 
• In large plants MPC is not a replacement for traditional PID, 

but used in addition to PID controllers. 
• PID controllers are used as single-loop controllers, while 

MPC is used as an overall system. 
• PID handles only a single input and a single output (SISO 

systems), while MPC is a more advanced method of process 
control used for MIMO systems (Multiple Inputs, multiple 
Outputs).



PID vs. MPC
Traditional Control (PID) MPC

• No knowledge about constraints
• Set-point far from constraints
• Not optimal process operation
• SISO systems
• A mathematical model is not needed

• Constraints included in the design
• Set-point can be closer to constraints
• Improved process operation
• MIMO systems
• A mathematical model is needed

Another advantage of MPC is that cross coupling in multiple input and multiple output (MIMO) systems are taken into consideration in an optimal way. MPC is a simple method for controlling MIMO systems.



MPC in LabVIEW
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MPC in LabVIEW
In LabVIEW you have the following Predictive Control palette:

• You use the “CD Create MPC Controller” VI to create an MPC controller. This VI 
bases the MPC controller on a state-space model of the plant that you provide.

• The “CD Implement MPC Controller” is used to calculate the control values for 
each sampling time and is normally implemented in a loop, e.g., a While Loop. 



MPC Example in LabVIEW
This is just a “bad” example – we will create a better application



MPC 
LabVIEW Application
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Model Predictive Control (MPC)

Here you see MPC used in 
combination with an Estimator.

Since we already use a Kalman 
Filter Estimator, we can use that in 
combination with MPC
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