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PID + Kalman Filter + MPC
LabVIEW Applications

Overview:

Part 1 — Introduction to LabVIEW Application

Part 2 — Building Simulator

Part 3 — PID Control

Part 4 — Feedforward using Kalman Filter

Part 5 — MPC (with Kalman Filter)




Introduction

In this Video we will Control a Level Tank System
using different control strategies:

* PID

 Use Kalman Filter for Estimation of Unknown
Process Variables/Measurements

* PID + Feedforward (with help of Kalman Filter)
« MPC (+ Kalman Filter)

We will not go in depth of the theory, but focus on
the practical implementation in LabVIEW
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Level Tank

Fin

LT

®

dh
AtE:Fi — Fout

. 1
h = A_(Kpu — Fout)
t

Where:
Fin - flow into the tank, Fi,= Kpu
F,.,+ - flow out of the tank
* A, is the cross-sectional area of the tank



Level Tank

. 1
h = A_(Kpu — Fout)
t

Fout = Assumption: F,,; =~ constant y = Cx + Du

x1=h
X2 = Fout

1 +1K
X, = Atxz a2 U
XZZO
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Level Tank Model Implementation in LabVIEW

. . . . . 1
We have implemented it as a Simulation h = _—[K.u—F
Subsystem in LabVIEW: A, [ p Out]
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Theory

System ldentification and Estimation \\ég/

e System Identification: System Identification uses
statistical methods to build mathematical models of
dynamical systems from measured data

e State Estimation: Use of mathematical models in
order to estimate the internal states of a process.
Example: Kalman Filter

LabVIEW has built-in functionality for both System
|dentification and State Estimation



Theory

System Identification Categories Y~

We have 2 main categories of System ldentification:

 Parameter Estimation based on that we have developed a
mathematical model using the laws of physics
(Mechanistic Models) and you want to find the unknown
model parameters. Here we can use least squares
method, etc. The unknown parameters are then found
from experimental data.

* Black-box / Subspace methods: System Identification
based on that you do not have a mathematical model
available. The models (Empirical Models) are found from
experimental data only using advanced algorithmes.



Th\eQ ry System .
w Ve Datalogging from Real System

/\(Experimental Data)

Phvsical Knowledee Mechanistic Empirical P:‘S/kPER'
Y 8 Models Models Black-box,
o . Subspace,
Finding mathematical model(s) The model is found from  Wavelet,
using the laws of physics/first experimental data etc
principles
y Empirical modelling refers to any kind of (computer) modelling

Datalogging from Real Parameter based on empirical observations rather than on mathematically
System describable relationships of the system modelled.

_ Estimation
(Experimental Data)

The unknown Parameters within the model(s) needs to be found Some of these can be found in data
. sheets, etc., while others is not so easy
Example of unknown Parameters: Pump gain, Valve constants, etc.  tofind. Then Parameter Estimation is a
good method to find these.

Trial and Error, Step Response, Least Square Methods, etc.



System ldentification Methods \“Q/

Suggestions: Find the Model Parameters using:
* The Least Square Method Ors = (PTP) 'Y

 Then adjust and fine-tune the Model Parameters using
the “Trial and Error” method if necessary

* Itis advised that you use at least 2 different methods
for comparison.

e Other relevant methods may be: “Step Response”
method, “Sub-space” methods, built-in methods in
LabVIEW/MATLAB, etc.



System Identification — Step by step

1. Exite the Real System, e.g.:

A
y
u
>
-~-tooep------------mommo oo .
2. Log Data w Vi " Split the Logged Data into

Log Data to File,
Database, etc.

v !
4
LA A

_________________________________________

3. Use the Logged Data to find the model or the model
parameters

4. Validate the Model against logged data and/or the real system

2 parts:

One part should be
used for finding the
Model (Parameters)
The other parts should
be used for Model
Validation



Least Square Example

Given:
x = ax + bu

We want to find the unknown a and b.
This gives:

x=lx_ulf]

N ——

y P N

o [5]

Then we need to discretize:

i.e.,:

Xk+1 — Xk
TS

X =

This gives:

Xik+1 — Xk

P a1 1
y

Based on logged data we get:

Xkg—1 — Xg—2

Ts a
Xpg — Xpe—1 | = ik—z Zk_z [b]

T il
Xk+1 — Xk k % k

TS

Y

The we find the uknows a and b using LS:
0,s = (PTD) 1Ty



Trial & Error Method

u >lml—L>|/
Compare
Process
>

Adjust model parameters and then compare the response from the
real system with the simulated model. If they are “equal”, you have
probably found a good model (at least in that working area)




Model Validation

Make sure to validate that your model works as expected

Example of simple model validation:
u >m—L>I/‘\
>
B Compare
: Real y . | _—
Process
>

C‘H@
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System Identification in LabVIEW

“LabVIEW Control Desigh and Simulation
Module” has built-in features for System

|dentification
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System ldentification in LabVIEW
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Datalogging Example in LabVIEW
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Least Square Example in LabVIEW
0,¢=(PTP) 1Ty

Least Square Formula implemented from scratch:
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We can also use the built-in “Solve Linear Equations.vi” directly:

FI

hi Solve Linear Equations.vi heta
[DBL]Y »oBL]

[DBL)




Least Square Example in LabVIEW

0, = (PTd) Ty
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Trial & Error in LabVIEW

& Trial and Error.vi Block Diagram
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Water Tank Model Values

The following values was found using System Identification:

: 1
h = T |Kpu—Foue]
g A, =785 cm

K, =16.5cm?/s

F,,: should be adjustable from your Front Panel
The range for F,y: could, e.g., be 0 < F,,; < 40cm?/s



Level Tank Model Implementation in LabVIEW

We have implemented it as a Simulation h — — [Kou—F
Subsystem in LabVIEW: A, [ p Out]

P! Tank Model.vi Block Diagram on State Estimator. lvproj/My Computer
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Feedback (PID) Control

Filter [

>

Process




The PID Algorithm

t
u(t)—Ke'Kp edt + K, T,é
—rE T p-d
L 70
Where u is the controller output and e is the Tuning Parameters:
control error: e(t) = r(t) — y(6) Kp Proportional Gain

T; Integral Time [sec.]
r is the Reference Signal or Set-point

y is the Process value, i.e., the Measured value Td Derivative Time [sec. ]
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Feedforward Control

U = Upiqg + Uy

In this system is F,,,; a disturbance that
we want to remove by using Feedforward

In our Real Level Tank System, only
the Level is measured.

We will use Kalman Filter to find
Estimates for the outflow (F,,;)




Feedforward Control

* |In this system is F,,; a noise signal/disturbance
that we want to remove by using Feedforward.
 We want to design the Feedforward controller so

that F,,; is eliminated.

— Solve for the control variable u, and substituting the
process output variable h by its setpoint hg,,.

— F,,¢ is not measured, so you need to use the estimated
value instead. Assume that the setpoint is constant.

We will use Feedforward Control in order to improve the control, compared to ordinary Feedback Control.



Design Feedforward Control for Level Tank

. 1

h = A_ [Kpu—Fout]
We want to design the Feedforward controller so that F,,; is eliminated. t
We solve for the control variable u, and substituting the process output variable h by its setpoint hg,. This

gives the following feedforward controller u:

up = Ahsp + Fout Note! K, is here the
. Kp Ky Pump Gain — NOT K, in
We assume that the setpoint is constant, i.e. hs, = 0. This gives: the PID Controller
out
uf =
Ky

F,,+ is not measured, so we have to use the estimated value instead. This gives the following
Feedforward controller:

Fout,est
Ky
Note! Without feedforward control the control signal range of the PID controller is normally [0, 5]. With

feedforward the output signal can be set to have the range [—5, +5], so the contribution u;4 from the

PID controller can be negative. If u,;4 cannot be negative, the total signal u = uy;q + ur may not be small
enough value to give proper control when the outflow is small.

uf=
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Kalman Filter

 The Kalman Filter is a commonly used method to
estimate the values of state variables of a dynamic
system that is excited by stochastic (random)

disturbances and stochastic (random) measurement
noise.

* We will estimate the process variable(s) using a Kalman
Filter.

* We will use one of the built-in Kalman Filter algorithms
in LabVIEW, but in addition we will create our own
Kalman Filter algorithms from scratch.
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Kalman Filter Algorithm

Pre Step: Find the steady state Kalman Gain K
K is time-varying, but you normally implement the steady state version of Kalman Gain K.

Init Step: Set the initial Apriori (Predicted) state estimate
Xo = Xg

Step 1: Find Measurement model update

)_}k = g(ka uk)
For Linear State-space model:

:)_7k = ka + Duk

Step 2: Find the Estimator Error
ex = Yk — Yk
Step 3: Find the Aposteriori (Corrected) state estimate
X =X + Key
Where K is the Kalman Filter Gain. Use the steady state Kalman Gain or calculate the time-varying Kalman Gain.

Step 4: Find the Apriori (Predicted) state estimate update
Xp+1 = f (X ug)
For Linear State-space model:
fk+1 = Afk + Buk
Step 1-4 goes inside a loop in your program.



Testing the Kalman Filter

As with every model-based algorithm you should test your Kalman
Filter with a simulated process before applying it to the real system.

You can implement a simulator in LabVIEW since you already have a
model (the Kalman Filter is model-based).

In the testing, you can start with testing the Kalman Filter with the
model in the simulator (without noise).

Then you can introduce some noise in your simulator.

You could also introduce some reasonable model errors by making
the simulator model somewhat different from the Kalman Filter
model, and check if the Kalman Filter still produces usable estimates.
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State Estimation in LabVIEW

“LabVIEW Control
Design and Simulation
Module” has built-in
features for State
Estimation, including
different types of
Kalman Filter algorithms
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Built-in Kalman Filter in LabVIEW

. Kalman Filter Example.
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Linear Kalman Filter Implementation from scratch

o
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Nonlinear Kalman Filter Implementation from scratch
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Model Predictive Control (MPC)

Model predictive control (MPC) is an advanced method of process
control that has been in use in the process industries since the 1980s.

Model Predictive Control (MPC) is a multivariable control algorithm.

Model predictive controllers rely on dynamic models of the process,
most often linear empirical models obtained by system identification.

MPC is based on iterative, finite-horizon optimization of a plant
model.

This is achieved by optimizing a finite time-horizon, but only
implementing the current timeslot. MPC has the ability to anticipate
future events and can take control actions accordingly.

https://en.wikipedia.org/wiki/Model predictive control
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Model Predictive Control (MPC)
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MPC Controller
MPC consists of:

A Model of the process
— Typically a State-space model, e.g.:
x = Ax + Bu
y=Cx+ Du

* A Cost function, e.g.:
Np N¢
] = z(y —PT0 G —1) + z AuTR Au
k=0 k=0

* Constraints, e.g.:
Umin Su=s Umax

Ymin = y = Ymax



MPC Cost Function

The cost function often used in MPC is like this (a Linear Quadratic (LQ) function):

Np N¢
] = 2()7 -NQ@—-7r) + Z AuTR Au
k=0 k=0

Where:

N,, — Prediction horizon, N, — Control horizon So the basic problem is to solve:
r — Set-point aJ

y — Predicted process output Ju =0 = uUgpe

Au — Predicted change in control value, Au;, = uj, — uj_4
(Q — Output error weight matrix
R - COﬂtFOl Welght matrix [National Instruments, LabVIEW Control Design user Manual, 2008.
Available: http://www.ni.com/pdf/manuals/371057f.pdf]
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The Cost Function — Optimization

So the basic problem is to solve:
a By solving this we get the future

i optimal control.
J ou 0 = Uopt

Solving g—i = 0 is quite complex and
will not be part of this tutorial, but
in the figure below we see an
illustration of the problem.

LabVIEW, MATLAB, etc. have built-in
functions and algorithms which we




Constraints

* All physical systems have constraints.

* We have physical constraints like actuator limits, etc. and we
have safety constraints like temperature and pressure limits.

* Finally we have performance constraints like overshoot, etc.

, , The MPC controller takes all
In MPC you normally define these constraints: these constraints into

Constraints in the outputs: consideration when calculating

Ymin =Y = Ymax the future controls.
Constraints in the inputs:

Aumin< AU < Alpgy
Umin S U = Upay
Note! Au;, = up — up_q



Model Predictive Control (MPC)

—» MPC

Yk

Ref
Uk
Process
A
—p| Estimator
X R
v vk

Here you see MPC used in
combination with an Estimator.

Since we already use a Kalman
Filter Estimator, we can use that
in combination with MPC



PID vs. MPC

MPC is often used in addition to traditional control like PID
— not as a replacement.

In large plants MPC is not a replacement for traditional PID,
but used in addition to PID controllers.

PID controllers are used as single-loop controllers, while
MPC is used as an overall system.

PID handles only a single input and a single output (SISO
systems), while MPC is a more advanced method of process
control used for MIMO systems (Multiple Inputs, multiple
Outputs).



PID vs. MPC

Traditional Control (PID) MPC

constraint A constraint

output

et point et point
time time
* No knowledge about constraints e Constraints included in the design
e Set-point far from constraints * Set-point can be closer to constraints
* Not optimal process operation * Improved process operation
* SISO systems * MIMO systems
A mathematical model is not needed * A mathematical model is needed

Another advantage of MPC is that cross coupling in multiple input and multiple output (MIMO) systems are taken into consideration in an optimal way. MPC is a simple method for controlling MIMO systems.
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MPC in LabVIEW
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MPC in LabVIEW

In LabVIEW you have the following Predictive Control palette:

{} I Ck‘_-';ean:h l o Wiew ™ ‘
0+ T+ 0+
HEMN—_| 8N 0
v v o
CD Create M... CD Implemen... <€D Set MPC ...
-+ -+ -+ -+
e &G’ 7 X
{11 1 {11 -1
CD Create M... CD Read MPC... CD Write MP... CD Delete MP...
-+ -+
> 3 -
=ym Eh
K Ked K Ked
CD Step Forw... CD Update M...

You use the “CD Create MPC Controller” VI to create an MPC controller. This VI
bases the MPC controller on a state-space model of the plant that you provide.
The “CD Implement MPC Controller” is used to calculate the control values for
each sampling time and is normally implemented in a loop, e.g., a While Loop.



MPC Example in LabVIEW

B MP ample ple Mode 0 a

= e will create a better application

File Edit View Project Operate Tools Window Help
Q]E [ 13pt Dislog Font <|[5=-]

]

System | Profiles | Constraints and Weighting

1 State-Space Model
x=——x+ Ku Model name:
T
A
2
= jr 0 0,2 0 ]
; 0 0 0
= jr u o 0 0
mpoongEEea IR, n
r T 5 5 2 2
I 0 0

o

Equation
x(k+1) = [‘U:Z] x(k) + [2] u(k)
vk =[] x + [o] uiky

CD Draw State-Space Equation. vi
Faa

=

PC Controller Parar

neters Gl

[CD Implement MPC Controller.vi

D Create MPC Controlle

[Controller>>]
IPC Cost Weights|
< = Barrier v

rror in (no error’

[Plant Model>>>>

D000 00000000000000000000000000000000000000000000000000
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Model Predictive Control (MPC)

—» MPC

Yk
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A
—p| Estimator
X R
v vk

Here you see MPC used in
combination with an Estimator.

Since we already use a Kalman
Filter Estimator, we can use that in
combination with MPC



El Control Application [ControlAppwithMPC.vi] Front Panel on LabVIEW Control Examples.lvproj/My Computer — O X
File Edit View Project Operate Tools Window Help OTH v
2> & () 11 |15ptApplication Font ~ | $ov ov v &b~ *| Search A, @ HIlHL ~ee
~
Control System Plot (Level)  Plot (Fout) Plot (Control) Kalman Filter MPC  MPC Weighting  Configuration  Error Handler
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